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Abstract--A reduced basis teclmique and a computational procedure are presented for generating the

nonlinear vibrational response, and evaluating the first-order sensitivity coefficients of composite plates

(derivatives of the nonlinear frequency with respect to material and geometric parameters of the plate).

The analytical formulation is based on a form of the geometrically nonlinear shallow shell theory with
the effects of transverse shear deformation, rotatory inertia and anisotropic material behavior included.

The plate is discretized by using mixed finite element models with the fundamental unknowns consisting
of both the nodal displacements and the stress-resultant parameters of the plate. The computational

procedure can be conveniently divided into three distinct steps. The first step involves the generation of

various-order perturbation vectors, and their derivatives with respect to the material and lamination

parameters of the plate, using Linstedt-Poincar6 perturbation technique. The second step consists of using
the perturbation vectors as basis vectors, computing the amplitudes of these vectors and the nonlinear

frequency of vibration, via a direct variational procedure. The third step consists of using the perturbation
vectors, and their derivatives, as basis vectors and computing the sensitivity coefficients of the nonlinear

frequency via a second application of the direct variational procedure. The effectiveness of the proposed
technique is demonstrated by means of numerical examples of composite plates.
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NOTATION

elastic moduli of the individual layers in the

direction of fibers and normalto it, respect-
ively

global flexibility matrix of the plate model

nonlinear arrays in the reduced equations

shear moduli in the plane of fibers and

normal to it, respectively
vector of nonlinear terms

vector of stress-resultant parameters of the

plate model

total thickness of the plate

linear stiffness' arrays in the reduced

equations

consistent mass matrix of the plate model

mass coefficients in the reduced equations

Fourier harmonic (wave number)

highest-order term retained in the pertur-
bation series

total number of approximation vectors

strain-displacement matrix

kinetic energy of the plate
time

displacement components of the reference
(middle surface) in the coordinate directions

vecto'r of nodal displacements of the plate
model

Cartesian coordinate system

perturbation parameter

rotation components of the reference

(middle) surface of the plate

amplitudes of approximation vectors
=0) 2

circular frequency of vibration

VL r major Poisson's ratio of the individual layers
Hellinger-Reissner functional of the dis-

cretized plate

material or lamination parameter of the plate

Range of indices

i zero to highest-order exponent of _ in the

i,j,k,s
DI

Subscript
c

Superscript
T

perturbation expansion of 0) 2
1 tor

zero to number of harmonics used in the

temporal approximation

center

transpose

INTRODUCTION

Significant advances have been made in the develop-

ment of effective analytical and numerical techniques

for the nonlinear vibration analysis of composite

plates (see, for example, [1-9]). Reviews of some

of these techniques are contained in survey

papers [10-13] and two monographs [14, 15].

However, the use of nonlinear vibration analysis

in automated optimum design of composite plates

requires the availability of efficient techniques

for calculating the sensitivity of the nonlinear

vibration response to variations in the design
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variables. The sensitivity coefficients (derivatives

of the nonlinear vibration frequencies with respect

to design variables) can be used to: (a) determine

a search direction in the direct application of nonlin-

ear mathematical programming algorithms. When

approximation concepts are used for optimum design

of beams, sensitivity coefficients are used to construct

explicit approximations for the critical, and poten-

tially critical, behavior constraints; (b) generate

an approximation for the nonlinear frequency of

a modified beam (in conjunction with a reanalysis

technique); (c) assess the effects of uncertainties,

in the material and geometric parameters of

the beam, on the nonlinear frequency; and, (d) pre-

dict the changes in the nonlinear frequency due to

changes in the beam parameters. Two general pro-

cedures are currently being used for calculating

the sensitivity coefficients of nonlinear structural re-

sponse. The two approaches are (see, for

example, [16-19]): the direct differentiation method

and adjoint variable method. The first procedure

is based on the implicit differentiation of the

equations that describe the nonlinear response

with respect to the desired parameters and the sol-

ution of the resulting sensitivity equations. In the

adjoint variable method an adjoint physical system is

introduced whose solution permits rapid evaluation

of the desired sensitivity coefficients. Both procedures

can be applied to either the governing discrete

equations or to the functional of the variational

formulation of the structure (with a consequent

change in the order of discretization and implicit

differentiation).

Recently, the reduced basis technique, which was

first presented in [20], was adapted to the nonlinear

vibration analysis of composite plates in[21].

The present paper extends the reduced basis tech-

nique to the evaluation of the sensitivity coefficients.

A geometrically nonlinear shallow shell theory is

used, with the effects of transverse shear deforma-

tion, rotatory inertia and anisotropic material
behavior included. The perturbation vectors are

used as coordinate functions in evaluating the

nonlinear frequencies. A combination of the pertur-

bation vectors and their derivatives with respect

to the material and lamination parameters of the

panel is used, in conjunction with a direct differen-

tiation approach, for approximating the sensitivity
coefficients.

MATHEMATICAL FORMULATION

Variational equations

The spatial discretization is performed by using
two-field mixed finite element model with the

fundamental unknowns consisting of nodal displace-

ments and stress-resultant parameters. For un-

damped free vibrations of the discretized plate, the

variational equations used in evaluating the nonlinear

vibrational response and the sensitivity coefficients

can be written in the following form

_t t2
6 (T-- 7t) dt =0 (!)

I

and

6 dt = 0 (2)
, 02

x3 x3 kth

f f layer 7

•/.c LII!
x .oj

jy .og

Material 1 Matedal 2

EL/E T 10.0

GLT/E T 0.333

GTT/E T 0.2667

VLT 0.22

h/L = 0.01

40.0

0.5

0.4

0.25

Boundary condition_

Atx 1 =O,L

w--_2=O

At x2 = O, L

w=_ t =0

Fig. 1. Panels used in the present study and sign convention for displacements and rotations.
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Fig. 2. Convergence of nonlinear frequencies co _L/co 2£obtained by the reduced basis and perturbation
techniques. Two-layered cross-ply and angle-ply square plates (see Fig. I). For the antisymmetric/

symmetric mode win,_ occurs at x t = 0.25L, x 2= 0.5L.

subject to the condition that at times t = I t and t = t 2,
the first variations of the fundamental unknowns

(generalized nodal displacements and stress-resultant

parameters) and their sensitivity coefficients (deriva-

tives with respect to 2) vanish. In eqns (1) and (2), 2

refers to a typical material, lamination or geometric

parameter of the plate; T and n are the kinetic energy

and Hellinger-Reissner functional of the discretized

plate given by

l ( dX ")T f _X ")

n = {H}T(_t_F]{H} +[S]{X'}
\

{G(X)}), (4)+
/

where {H} is the vector of stress-resultant par-

ameters; {X} is the vector of the nodal dis-

placements; [M] is the consistent mass matrix;

[F] is the global flexibility matrix; [S] is the

strain-displacement matrix; {G(X)} is the vector

of non-linear terms; and superscript T denotes trans-

position.

The application of the reduced basis technique

to the nonlinear vibration and sensitivity analyses

of the plate can be conveniently divided into

three distinct steps: (1) generating perturbation

vectors, and their derivatives with respect to the

material, lamination and geometric parameters of

the plate, using the Linstedt-Poincar6 perturbation

technique; (2) using the perturbation vectors as

basis (or global approximation) vectors, and

computing the amplitudes of these vectors and the

nonlinear vibration frequency via a direct variational

technique, in conjunction with the method of

harmonic balance; and (3) using the perturbation
vectors and their derivatives as basis vectors and

!t
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Fig. 3. Convergence of the normalized sensitivity coefficients 2 (0¢o _L/d2)/¢o z£ for the lowest symmet-
ric/symmetric and antisymmetric/symmetric vibration modes, obtained by the reduced basis and pertur-
bation techniques. Two-layered cross-ply square plates (see Fig. 1). For the antisymmetric[symmetric

mode win,x occurs at x t = 0.25L, x 2= 0.5L.

evaluating the sensitivity coefficients of the nonlinear

frequency via a second application of the direct

variational technique. The procedure is described

subsequently.

Generation of perturbation vectors and their derivatives

For the purpose of generating basis vectors, a new

independent variable 1: = o9t is introduced, where o9 is

the nonlinear circular frequency. The following ex-

pansion is used for f_ = co 2, in terms of a small

parameter E

o92= _2(_)= _ fl(;)E;. (5)
i=0

Only the even values of i (i=0, 2, 4 .... ) are

retained in the expansion. The vectors {H} and

{X} are also expanded in perturbation series of the
form

'= El"

Each of the time-dependent vectors, {H(_)} (;) and

{X(O} (i), are expanded in a Fourier series in _, and
therefore

{H(t,_)} / ; CH ")(;'') ,X(t,+) =_,( 2 _X_ c°srnc°tJ 'i" (7)
'= \m=0k ) /

The equations used in generating the vectors

are obtained by substituting the expansions for {H },

{X } and o9 2, eqns (5) and (7), into eqns (3), (4) and
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Fig. 4. Convergence of the normalized sensitivity coefficients ). (0o92uL/d2 )/092L for the lowest symmetric
vibration mode, obtained by the reduced basis and perturbation techniques. Two-layered angle-ply

composite plates (see Fig. I).

(1); converting each term into the first power

of cosine functions in t; and setting the like terms
of E and m to zero. This leads to a recursive set

of linear equations in {H }0.,,,) and {X} (_''). The

explicit form of these equations is given in[21].

Note that the linear free vibration problem

corresponds to i =m = I. For each vibration

mode (i.e., a prescribed pair of eigenvalue and

eigenvector) a set of vectors {H} (i'''l and {X} (_''')
can be generated. The multipliers of E_, i.e.,

the quantity between parentheses in eqn (7),

will henceforth be referred to as the perturbation

vectors.

The derivatives of co2, {H } and {X } with respect

to the material, lamination and geometric parameters

of the plate are given by

&o 2 Of_ Of_")
_:-, E' (8)

02 02 _=o 0x

and

cos,,,,o,),,,_ x(t,,) =, ,,_o_ x

(9)

The equations used in generating

OH }(i.,,,), OX "_i,,,,)

are obtained by either: (a) differentiating the govern-

ing recursive equations in {H} '''), {X} '_''' with

respect to 2; or (b) following the same steps used

in generating the governing equations for

{H }'"'_, {X }(_'"'), but using the functionals in eqn (2)

of the functionals in eqn (1).

In the present study, computerized symbolic

manipulation was used in generating the perturbation

vectors and their derivatives with respect to 2. The

nonzero terms are associated with either (i, m) even,

!
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Fig. 5. Normalized contour plots of the generalized displacements and their sensitivity coefficients
associated with the lowest vibration mode. Two-layered angle-ply composite plates (see Fig. 1). Spacing

of the contour plots is 0.2 and the dashed lines refer to negative contours.

or (i,m) odd, and are listed in Table 1. All the

nonzero coefficients correspond to even values of

i+m.

Computation of amplitudes of basis vectors and non-

linear frequency

The perturbation vectors in eqn (7) are now chosen

as basis vectors, and the response vectors are ex-

pressed as linear combinations of these vectors as
follows:

.i=, Xf c°smc°t) q/i' (10)

where _b; are unknown parameters representing the

amplitudes of the basis vectors; and r is the total

number of basis vectors used. Equation (10) is

substituted into eqns (1), (3) and (4). A direct vari-

ational technique is used in conjunction with the

method of harmonic balance to approximate eqn (1)

by a system of nonlinear algebraic equations in ffi

(i = 1 to r) and _ 2. The additional equation needed

to solve the system is obtained by prescribing either

one of the displacement components (linear combi-

nation of _'i) or one of the parameters of _bi. The

additional equation will henceforth be referred to

as the constraint condition. The form of the

nonlinear algebraic equations in _biand co 2 is given in

Appendix I.

Evaluation of the sensitivity coefficients of the non-

linear vibrational response

The perturbation vectors and their derivatives with

respect to 2 are used in approximating the derivatives

of the response vectors as follows:

0{.} )0"--2 X =i=l ,, o_'2 cosmcot ¢i

+ ,_l _ H ](i") \"= .... 0 Xf cosmcot _,,
(11)

Table 1. Pairs of (i, m) for which the perturbation vectors
are nonzero

i/m 0 1 2 3 4 5 6

I 1,1
2 2,0 2,2
3 3,1 3,3
4 4,0 4,2 4,4
5 5,1 5,3
6 6,0 6,2 6,4
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where_7_areunknownparameters.Equation(11)is
usedinconjunctionwitha directvariationaltech-
niqueandthemethodof harmonicbalanceto ap-
proximateeqn(2)bya systemof linearalgebraic
equationsin _ (i= 1 to r) and 0a)2/02. The

additional equation is obtained by differentiating

the constraint condition, used in evaluating co 2,

with respect to 2. The form of the linear alge-

braic equations in O_bt/O2 and 0_o2/02 is given in

Appendix II.

NUMERICAL STUDIES

To assess the effectiveness of the proposed reduced

basis technique, a number of nonlinear vibration

problems of laminated composite plates have been

solved by this technique. For each problem the

convergence of the sensitivity coefficients obtained by

the proposed technique was compared with those

obtained by the perturbation technique. Herein, re-

sults are presented for typical two-layer cross-ply and

angle-ply square plates (see Fig. 1). The same prob-

lems were used in [21] to demonstrate the effectiveness

of the reduced basis technique for nonlinear vibration

problems.

The plates were discretized by using mixed finite

element models with bicubic interpolation functions

for each of the generalized displacements and stress
resultants. The characteristics of the finite element

model are given in [22]. Because of symmetry, only

one quarter of the cross-ply plate and one-half of the

angle-ply plate were analyzed, and the appropriate

symmetry/antisymmetry conditions were applied

(see [23]). An 8 x 8 grid was used for the cross-ply

plate, and an 8 × 16 grid was used for the angle-ply

plate.

The perturbation parameter Ewas selected to be the

coefficient of the linear vibration mode [_,_ in

eqn (10)], and the Linstedt-Poincar6 method was

used to generate perturbation vectors, and their

derivatives, up to order 10 of E [n = 10--where n is

the highest-order term in the perturbation series of f_,

{H} and {X} in eqns (5), (6), (8) and (9)].

The perturbation vectors were used as coordinate

vectors, and a direct variational technique was

applied to determine the nonlinear frequency and

the amplitudes of the coordinate vectors [_O_ in

eqn (10)]. The perturbation vectors and their deriva-

tives, eqn (11), were then used in conjunction with

a direct variational technique to determine the

parameters _ and the sensitivity coefficients 00_ 2/02

[eqns (11) and (Bl)--Appendix ll] corresponding

to different values of E. The sensitivity coefficients

were validated by comparing them with the finite

difference results. Very close agreement was ob-

served between both. Typical results are shown

in Figs 2 and 3 for the cross-ply plate and in

Figs 2, 4 and 5 for the angle-ply plate, and are

discussed subsequently. Figure 2 is reproduced

from [21].
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The accuracy and convergence of the nonlinear

vibration frequencies associated with the first sym-

• metric/symmetric and first antisymmetric/symmetric

modes for cross-ply panels, obtained by the reduced

basis and perturbation techniques, are shown in Fig.

2. The corresponding convergence plots for the non-

linear vibration frequency associated with the lowest

symmetric mode of the angle-ply plate are also shown

in Fig. 2.

The convergence of the sensitivity coefficients

0co2/02, are shown in Fig. 3 for the lowest two

frequencies of the cross-ply plate, and in Fig. 4 for the

lowest frequency of the angle-ply plate. Each sensi-

tivity coefficient is normalized by multiplying by 2

and dividing by the square of the linear frequency

_o _. In Figs 3 and 4, n refers to the highest-order term

in the perturbation series, eqns (8) and (9), and r

refers to the total number of coordinate functions

[number of _ in eqn (11)]. In Fig. 3, 2 was chosen to

be EL and G,r; and in Fig. 4, 2 was chosen to be EL,

Er, GLr and VLr.

As expected, the accuracy of 0o92/02 obtained by

the perturbation technique deteriorates rapidly with

the increase of Wmax/h, particularly for Wm_x/h > 1 in

the angle-ply plate. For both plates when Wmax/h >1 2,

the sensitivity coefficients &o 2/02 were considerably

in error. On the other hand, the convergence of the

sensitivity coefficients obtained by using the reduced

basis technique was reasonably fast, even for WmaJh

outside the radius of convergence of the perturbation

technique. This is particularly true, up to

Wmax/h : 3.0, for the sensitivity coefficients with re-

spect to Er, GLr and vLr for the angle-ply plate.

• In Fig. 5 normalized contour plots are presented

for the displacements u I, u2, w, _b_ and 4_2 associated

with the nonlinear vibration mode at w,./h = 2.0 for

the angle-ply plate. Each contour plot is normalized

by dividing by its maximum absolute value. Also

shown in Fig. 5 are the normalized contour plots for

the sensitivity coefficients with respect to EL, Er and

GLr at the same value of w,./h. Note that the contour

plots for the sensitivity coefficients are quite different

from those of the vibration mode.

CONCLUDING REMARKS

A reduced basis technique and a computational

procedure are presented for generating the nonlinear

vibrational response, and evaluating the first-order

sensitivity coefficients of composite plates (derivatives

of the nonlinear frequency with respect to material

and geometric parameters of the plate). The analyti-

cal formulation is based on a form of the geometri-

cally nonlinear shallow shell theory with the effects of

transverse shear deformation, rotatory inertia and

anisotropic material behavior included. The plate is

discretized by using mixed finite element models with

the fundamental unknowns consisting of both the

nodal displacements and the stress-resultant par-

ameters of the plate.
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The computational procedure can be conveniently

divided into three distinct steps. The first step in-

volves the generation of various-order perturbation

vectors, and their derivatives with respect to the

material and lamination parameters of the plate,

using Linstedt-Poincar6 perturbation technique. The

second step consists of using the perturbation vectors

as basis vectors, computing the amplitudes of these

vectors and the nonlinear frequency of vibration, via

a direct variational approach. The third step consists

of using the perturbation vectors, and their deriva-

tives, as basis vectors and computing the sensitivity

coefficients of the nonlinear frequency via a second

application of the direct variational procedure. The

effectiveness of the reduced basis technique is demon-

strated by means of numerical examples of two-lay-

ered cross-ply and angle-ply plates. The convergence

of the sensitivity coefficients obtained by the reduced

basis technique was compared with that of the pertur-

bation technique.

On the basis of the present study, the following

observations can be made. The reduced basis tech-

nique can be thought of as either a generalized

perturbation technique in which the response vectors

contain free parameters rather than fixed coefficients

and the perturbation parameter need not be small; or

an extension of the direct variational technique with

the coordinate vectors generated by using a pertur-

bation technique rather than chosen a priori. The

successive application of the perturbation technique

and the direct variational procedure, which forms the

basis of the foregoing reduced basis technique, results

in enhancing the effectiveness of the direct variational

technique by removing (or reducing) the arbitrariness

in the selection of the coordinate vectors; and extend-

ing the range of applicability of the regular pertur-

bation technique by removing the restriction of a

small perturbation parameter.
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coordinate functions ff_, and the frequency o), can be writte
in the following compact form:

K,jq,_+ FM,_,_ + coM,jq,_q,_- o_-'M0q,j= 0, (Al

where the range of i,j, k, s is 1 to r; and a repeated inde
in the same term denotes summation over its full range. Th
arrays K_i, F#k, GOk.,and M_iare obtained by using eqns (I01
(3), (4) and (I); applying the method of harmonic balanc
and performing the temporal integration.
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APPENDIX iI--FORM OF THE LINEAR EQUATIONS IN if; •

AND dt9 2/d/.

The linear algebraic equations in the amplitudes of the

coordinate functions _, used in approximating the deriva-

tives of the displacement parameters, and the sensitivity

coefficients 0co 2/0_., can be written in the following compact
form:

_ aco 2

[(Ku+ 2Fok _,_.+ 3G_..O, _. 3 -- _o 2M,j I 4's - MoOj -_

=- -S_-+-_-q,_+_¢,_,, ,o-_- _j. tin)

Note that the tps appearing on the left-hand side ofeqn (BI)
are obtained from eqn (AI). The K, F, G and M arrays

appearing on the left-hand-side of eqn (BI) are in terms of

{H} _''_ and {X} °"°. The corresponding arrays on the

right-hand-side are in terms of the corresponding 0/02

{n }o..,_ and 0/02 {g} _i''°.




